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Operations on diagrams are examined as part of a search for a model of 
superposition. Diagram operations are required to represent physical 
processes. 

1. I N T R O D U C T I O N  

A physical operation, something you do, is a physical process, something 
that happens. This seems obvious in a way: just that whenever you do any- 
thing, you are doing something physical. But physicists have become sloppy 
on this point, thinking of measurements, for example, as mathematical 
operations. In order to describe a measurement or any physical manipulation 
or operation, it is necessary not only to give a mathematical representation 
of the transformation, but also a description of the physical process, just how 
the transformation was effected physically. 

I f  all physical processes are represented as networks of  a fundamental 
discrete process,* then physical operations will be so represented as well. 
Given a network, it can be changed mathematically in many ways: links can 
be removed or added, connections can be switched, parts of  the network can 
be interchanged, and so on. Physically, these operations may not be possible. 

What operations are physically possible ? In this paper, after a formal 
definition of a diagram, some operations are defined which may model 
physical processes. All physical operations must add interactions; none can 
take away interactions that already happen. The formal representation of a 
physical operation must result in a representation of a possible physical 
process. 

* D. Finkelstein and others (1969-1974) in the Spacetime Code series. For references see 
McCollum (1978). Part of Spacetime Code VI appeared as "Discrete Feynman 
Diagram" in Castell et al. (1977). 
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The relevant mathematics for networks of discrete quantum processes is 
graph theory. The diagrams I will define are not strictly graphs because they 
are not sets of point pairs; they are sets of edges. I have considered 2n-regular 
(see Section 3) diagrams because it is an easy generalization, even though I 
think 4-regular will give the most immediate physical results. This treatment 
is too rigorous for some purposes and insufficiently mathematical for others. 
It is intended to be a grounding rigorous enough to support future work. 

I am in search of a theory that is born quantum. What does that mean ? 
It must have both discrete and continuous characteristics. Also, it must have 
a superposition operation. 

I am starting with a discrete object, the diagram. If there is a super- 
position operation, there is hope of continuity at the appropriate limit. In this 
paper I am concerned with the search for the superposition operation. 

There are several possibilities for the way superposition will be intro- 
duced. It could have to be put in by hand such that each edge Of a diagram 
is individually superposable. That is suspect because it is forced. Also, there 
arise questions about the superposition of different diagrams: surely two 
processes that are not elementary can be superposed. Either this would 
follow from the superposition of elementary processes, which is problematic 
mainly because there would be topological constraints; or superposition 
would be a regular diagram operation, arising from nonquantum diagram 
properties. In the latter case superposition must be definable in the usual way 
as a diagram operation. 

Which makes it the same as the case I am exploring in this paper: 
If  I look at diagram operations that preserve diagram properties, without 
making any special quantum requirements, will I find an operation that 
would serve as a superposition ? If  so, I have answered in the affirmative the 
question whether quantum properties arise naturally, without special require- 
ments. If I find no such operation, the question remains open. It could be 
that I have overlooked something. It could be that I should go to a more 
complex level. 

A third possibility is that superposition is not a two-diagram operation 
giving a third diagram, but an operation among larger sets of diagrams or 
something else altogether. If  so, the physical interpretation of a single diagram 
would be significantly different than if a diagram operation superposition is 
found. 

2. DIAGRAMS 

A graph is a set of pairs of points. If  an edge is a point pair, then edges 
with the same endpoints are the same edge. This seems like a restriction 
unnecessary and probably fatal to the physics. As long as I cannot use graph 
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theory directly, I might as well define exactly what I mean. Many definitions 
and theorems carry over easily from graph theory anyway. The difference is 
this: graphs start with points, diagrams start with edges; in a diagram, a point 
is the end of an edge. 

Definition. A diagram is a set of internal edges i, along with a set of 
external edges era. An internal edge has two endpoints called vertices which 
may be the same. An external edge has two distinct endpoints; one is a vertex 
(i.e., can be the endpoint of an internal edge) and one is an external point. 
Each external point is the endpoint of exactly one external edge. Endpoints 
are said to be included in edges, two to an edge. Incidence relations among 
edges are described as the inclusion of common vertices. 

A diagram is a representation of a physical process, perhaps still at a 
more fundamental level than the processes we usually observe. Most observed 
physical processes are incomplete, having an ignored or unknown past and 
future and many unmeasured aspects. So the representation of the physical 
process should be by nature incomplete, having room for inputs and outputs, 
places where other processes can continue. These are the external edges. There 
is a natural composition which will allow diagrams to be multiplied, repre- 
senting the continuation of one process into another. Any process, even the 
continued existence of an object, will be represented by the connection of 
lines through the process. A process may change, say water to steam, but 
there will still be lines connecting through the process. 

Definition. External edge composition is an operation between two 
different external edges: e~, including vertex V, and external point E~; and ej, 
including vertex Vm and external point Ej. The edges e~ and ej may be of the 
same or of  different diagrams. The result of the operation is a new internal 
edge with endpoints V, and Vm. E~ and Ej are deleted. 

Thus the process which was incomplete at E~ and Ej is seen to connect 
from V~ to Vm or vice versa. 

A line may connect through a series of edges as a walk, where each edge 
is a step. Approximate continuity at a more complex and macroscopic level 
is another matter entirely. The connection of lines here may imply the 
conservation of various quantities, like charge and lepton number. 

3. WALKS 

I am not sure at this point that the physical process should be represented 
by a regular diagram or by a diagram with an even number of  edges at each 
vertex, but there are strong reasons to suspect that both statements are true 
in the most common physical cases. 

The most basic, pervasive physical properties will be found in the simplest 
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vertex. Those are the quantum properties of discreteness and the special 
relativistic properties of space-time. Both quantum and relativistic properties 
probably depend on regularity. I say that both because of the similarity 
between the quantum and relativistic groups (Finkelstein, 1969-1974; 
Castell et al., 1977; McCollum, 1978) and because of the similarity between 
the motions on a vertex of four edges and those two groups (McCollum, 
1978). At this point these remarks are only motivational. 

Why an even number of edges at each vertex ? To make it easy to model 
conservation (McCollum, 1978). Especially the particle conservation laws, 
like charge, spin, strangeness, hadron number, will be critically dependent 
on the possibility of defining conservation as locally as possible in the physical 
model. What does the number of edges have to do with that ? It tells whether 
the diagram can be covered by walks, where a walk is just a path that connects. 
Without a path that connects, it would be hard to model something con- 
tinuing along a path. 

Both these points are germane to this section. It is awkward if not 
impossible to construct an operation preserving regularity with just sets of 
vertices and edges. The external point composition is a natural regularity- 
preserving operation, but the operation needs to be generalized to an opera- 
tion between diagrams. On Eulerian diagrams there is a structure that leads 
naturally to such a generalization. The relevant definitions follow. 

Definitions. (1) The degree of a vertex is the number of times the vertex 
is included in internal and external edges. (2) A diagram is Eulerian if, when 
the external edges are composed by pairs in any way, it is a Eulerian pseudo- 
graph in the sense of Harary (1969). (3) A diagram is n-regular if every vertex 
is of degree n. 

In order to show that "Eulerian diagram" is well defined it is necessary 
to prove the following: If a diagram becomes a Eulerian pseudograph under 
one pairing of external edges, then it will become one under any pairing. This 
is true since the pairing and composition affect the degrees of the vertices 
not at all. 

Since all but at most one of the external edges are composed away, 
whether the diagram is Eulerian depends only on the degrees of the vertices. 
The graph theoretical result carries over immediately: A diagram is Eulerian 
if and only if every one of its vertices is of even degree. 

Definitions. (1) A walk is a sequence of edges in a diagram such that 
each edge ends on the same vertex the next one begins on, no edge is repeated, 
and the whole walk either begins and ends on the same vertex or begins and 
ends on external points. (2) A covering by walks is a set of walks over a 
diagram such that every edge of the diagram is included in the set once and 
only once. 
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Remarks. (1) For an n-regular Eulerian diagram, n/2 walks cross at each 
vertex, counting a walk crossing itself as two walks crossing. (2) It makes 
sense to speak of the external-point composition of two walks that begin and 
end on external points. The composition depends on order. 

A number of operations between two diagrams with walks can be defined 
by taking compositions of walks in any well-defined way. I will define one 
simply using the external-point composition. 
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Fig. 1. G, H, and G @ H. 
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Definition. Let G and H be Eulerian diagrams, G be broken into walks 
wl . . . .  , w,, H be broken into walks xl . . . .  , xm, and w~xj be the external point 
composition of walks w, and xj. Then G | H consists of all walks w~xj com- 
posed of replicas of xj and w,, with all walks with j (or i) constant inter- 
secting to form a replica of  G (or H). I f  one or both of G and H have no 
walks with external points, then G | H = G u H. (See Figure 1.) 

We now have one regularity-preserving noncommutative operation 
between Eulerian diagrams with walks. To define the operation between 
diagrams without a specified coveting by walks, all coverings must be taken. 
How many are there ? 

Lemma. There are ( n -  1 ) ( n -  3 ) . . - 1  ways that n/2 undirected 
walks can meet at a vertex of even degree n. 

Proof Choose an edge. Then choose another edge for it to connect to. 
The first choice does not count because it had to be included in some walk. 
The second choice out of  n - 1 does count because it did not have to be 
connected to the first choice. And so on. 

Proposition. A Eulerian diagram with n~ vertices of  degree i has 
I-I, [(i - 1)(i - 3)- .. 1]"* coverings by undirected walks. 

Proof Given any combination of ways undirected walks can meet at 
each of the vertices of a Eulerian diagram, the combination determines a 
coveting by undirected walks. So the number of  coverings by undirected 
walks is simply the number of combinations. 

To find the number of  coverings by walks with direction would involve 
finding the number of walks in each covering. That is a harder problem. 

The operation is unwieldy in the simplest case and becomes more 
difficult to deal with in the case where the diagrams are not covered by walks. 
I see no physical application at this time, but this operation is a natural one, 
so should be kept in mind. The following section deals with a narrowing of 
this operation. 

4. M U L T I P L I C A T I O N  

In this section I want to define an operation which is more appropriate 
physically than the operation defined in the previous section and which leads 
to an interesting result. 

The walk operation in the previous section can be narrowed so that only 
certain walks are composed. In Figure 2, only one walk is composed. The 
total n~mber of vertices is constant and the number of  walks has decreased 
by one. In that particular example, only one pair of walks from different 
diagrams could be composed at once while preserving the number of  vertices. 
In Figure 1 all possible pairs are composed but the number of vertices increases. 
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Fig. 2. Only one pair of walks of G and H from Figure l composed. 

In this section I want to consider the operation of composing while 
preserving the total number of vertices. I could just specify the walks to be 
composed. This would presuppose the specification of walks, which is 
physically objectionable. Walks are a convenient tool in dealing with dia- 
grams, but they are not observable (McCollum, 1978). The walk operation 
does not presuppose a choice of walks, which would be unphysical; it uses 
them all. Since I do not want to use them all and proliferate diagrams (Figure 
1), I will define a similar operation using only the shapes of the diagrams, 
which are in principle observable. 

The positive physical motivation for this operation is that it is the one 
I would use to describe one process continuing into another, like an electron 
continuing to be an electron or one object metamorphosing into another. 
The definition without walks leads to a result which may be important later 
in dealing with repeating processes, with the question, what makes an object 
an object ? 

This operation uses all the information that is obtainable through 
experiment and no more. 

There are also formal reasons to define this operation. I think this 
operation will be the diagram analog of the multiplication of  amplitudes: 
when the diagrams are multiplied, so are the amplitudes�9 This is in direct 
analogy to standard quantum mechanics and is discussed in Section 6 of 
McCollum (1978). I expect it to be analogous to multiplication of operators 
in a Lie group. 

So I will call this operation diagram multiplication. It is the most 
natural diagram operation. But it is not particularly easy to specify. In fact, 
the whole point of defining the operation is in the exact specification of  how 
one process continues into another. There are many ways, all interesting, but a 
disaster if done at random. For  example, a repetition might not be a repetition 
at all if the multiplication is done differently each time. It may be later I will 
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want a partially specified multiplication, which will allow a certain amount 
of randomness. 

As it is, multiplication is not defined on all pairs of diagrams: it is 
partially defined. Preliminary definitions and notation are necessary. 

Definitions. The diagram Gs is a subdiagrarn of the diagram G if there 
exists a diagram Gq such that a certain pairwise composition of external edges 
between Gs and Gq is isomorphic to G. Gq is the quotient of Gs divided into 
G; it may not be unique unless external points or vertices are specified. (See 
Figure 3.) 

Notation. G~{E.} is a subdiagram of G means Gs is a subdiagram of G 
such that {En} of G~ are not to be composed in forming G with any Gq. (See 
Figure 3.) 

G 

Gs 

Fig. 3. Factoring a diagram. New G. 

{e.} 
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Definition. Let G{En} be a subdiagram of Gs and Gs{E~} be a subdiagram 
of Ta,c~(~.~G~. Then define Ta,as~E.} to be an operator multiplying G with 
another diagram, say G~, such that T~,a,,~E.~G~ is a diagram which can be 
obtained from G and Gp by external edge composition with the above 
subdiagrams. (See Figure 4.) 

Question. On which diagrams is Ta,a~s.~ defined? In a physical model 
this would amount to the question: Which processes Gv can be continued 
into the process G, if this operation is used to describe the continuation of one 
process into another? 

In order to answer the question I need another definition. 

Definition. If Gs{E~} is a subdiagram of G, an image of G~{E~} in G is 
a subset of G such that internal edges of G~ map to internal edges of the 
image, external edges {en} with external points {E.} map to external edges in 
the image, all other external edges map to edges, and incidences at vertices of 
G~{E.} are preserved. (In other words, Gs and the image are isomorphic if the 
incidence relations of external points other than {E.) are discounted.) (See 
Figure 5.) 

Answer. Let Gq be the quotient of G~{E.} divided into Ta,es(E~G v. Then 
Gq is a subdiagram of Gp. Te,a,~E.~Gp is defined only for those Gv's in which 
the images of Gq are equivalent to each other under automorphism of Gp. In 
other words, the product is defined if it really does not matter which side of 
Gp you stick G onto. (See Figures 4 and 6.) 

Now that the question of whe~ the multiplication is defined has been 
answered, the way is open to approach the question: When can the multi- 
plication operation repeat indefinitely ? When is Tg,e,~.~ defined ? Physically 

Gp G 

G8 

Fig. 4. Components of Ta,es~}Gp. 

(e.} 
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G 

6.{E~} image 

Fig. 5. G~{E,~} would be isomorphic to the image if incidence relations among external 
points of G~{E,,} were not considered. 

the question amounts to this: I f  this operation is used to describe the con- 
tinuation of one process into another, when can a process be described as 
repeating indefinitely 9. This question will be intimately related to such ques- 
tions as: Which processes are objects ? How can an object be produced ? Why 
is time one dimensional ? 

The last question anticipates the result: G can be attached indefinitely 
in the same way only if there are at most two ends of Gp at which G can be 
attached. 

Preliminaries. Let {Era} be the external points of Gp composed to make 
Tz.a~(~oGp and G~ be the quotient of Gq divided into G~. Then G~{E,~} is a 
subdiagram of  G,. (See Figure 6.) 

Proposition. Consider finite diagrams Gp. Tg,a,~Gp is defined for 
any k if and only if there are one or two images of  G~(Em} in 
Ta,a,(En~Gp, one is disjoint from Gp, and in the case of two images the 
images are equivalent under automorphism of Ta,as~)Gp and there 
are two equivalent images of  Ga{Em} in T~.a~(E,,~G~,. 
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Gq G,{E.} 

Gq Ga 

Fig. 6. G~ is a subdiagram of Gp. 

{E.} 

Proof. If:  The image of G~{Em} is just the place on Gp to which G will 
be attached. I f  one image of Ga{Em} in Ta,a,~E.)Gp is disjoint from Gp, then it is 
in G. So every time Ta,a,~E.~ iterates, it attaches an image of G={Em} while 
composing one away. I f  the images are equivalent in the first and second 
powers in the case of  two images, the symmetry is such that they will be for all 
odd and even powers. In the case of  one image, there is no equivalence to 
worry about for any power. 

Only if: Suppose there are more than two images. Then either they are 
not equivalent in Ta,a~F.,,)Gp or they would not be after one more iteration. 
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Suppose both images or part of both are contained in Gp. Then Gp is a central 
core that is being used up, so k cannot be arbitrarily large. 

This theorem specifies exactly when the multiplication operation can 
repeat indefinitely. If a physical theory is based on diagram operations, this 
will severely limit what kinds of objects there are, that is, what kinds of 
processes repeat. Also it limits time to one dimension if time is defined by the 
direction(s) of persistence of objects. 

What other operations are available? Multiplication and operations of 
the walk type are the best I have come up with. In the following section I 
discuss graph operations, the obvious candidates for generalization to 
diagrams. 

5. GRAPH THEORETIC OPERATIONS 

Diagrams are similar to graphs. The main difference is that the definition 
of a diagram is as a set of edges rather than as a set of pairs of points. There 
are other differences, like the naturalness of external edges, external-edge 
composition, and multiplication, but they are in principle minor: those 
differences would be easy to incorporate into graph theory. 

The similarity leads to the hope that concepts from graph theory will be 
useful in diagrams, and that theorems and proofs can be converted without 
difficulty. 

In the case of the common graph theoretic operations (Harary, 1969), 
the usefulness of the diagram analogs seems limited. They can be redefined to 
map two diagrams into a diagram, that is, to have only one external edge 
containing each external point. But of the four operations, only the union 
preserves regularity. A discussion of graph operations is, nevertheless, 
appropriate in this context; they are possible operations. I will define each 
operation and for the last three give examples of nonpreservation of 
regularity. 

Preliminaries. Let diagrams G1 and G2 have disjoint internal edge sets 
{i.}1 and {i.}2, disjoint external edge sets {e.}~ and {e.)2, disjoint vertex sets 
{V.}~ and {Vn}z, and disjoint external point sets {E.}I and {E.}2. Incidence 
relations are given by the vertices. 

Union. G~ w G2 has internal edge set {i~}1 ~3 {i~}2, external edge set 
{e.}l t3 {e.}2, vertex set {V.}I u {V.}2, and external point set {E.}I ~3 {E.}2. 

The union preserves regularity. It just is not very interesting. But it 
might be useful. 

Join. GI + Gz is the same as G~ w G2 but with internal edge set {i.}~ w 
{i.}2 w {all lines connecting { V.}~ with { V.}2}. (See Figure 7.) 
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GI + G2 
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Fig. 7. Join. The external points are e, ~ g, h, i,/. 

Graph product. G1 x G2 has vertex set the Cartesian product { V,}I x 
{V,}2 and external point set {En}l x {V,}2 u {V.}I x {E,}2. If X and Y are 
either vertices or external points: when X1 = Y1 there is one edge connecting 
(X~, X2) and (Y~, Y2) for every edge connecting 2"2 and Y~; when X2 = Y2 
there is one edge connecting (X1, 2"2) and (Y1, Y2) for every edge connecting 
X1 and Y1. (See Figure 8.) 

Composition. GI[G2] has the same sets of vertices and external edges as 
the graph product. The edge sets are the same with the addition to the 
internal edge set of an edge connecting (X~, ..Y~) and ( Y~, Y2) for every edge 
connecting J(1 and Y1 when J/2 ~ Y2 and 2"1, X2, Y1, and Y2 are all vertices. 
(See Figure 9.) 

Definitions analogous to those of the graph theoretic product and 
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composition can be made in several different ways. They all fail to preserve 
regularity in much the same way these do. 

These do not seem to be interesting physical operations. There is, in 
particular, no superposition here. 

6. WHERE IS SUPERPOSITION? 

The main result of this paper is negative: no operation like superposition 
has been found, even though it would be expected to be between simple 
processes, such as the operations which have been discussed. 

What is superposition ? A superposition operation commutes, preserves 
regularity, takes two physical processes and gives a physical process, is 
associative, and has nice properties in relation to the amplitude, yet to be 
defined. The requirements that it be commutative and preserve regularity 
eliminate all the operations that I have mentioned but one: the union. The 
problem with the union is that it lacks physical motivation and leads nowhere. 

So I have failed to find a superposition operation among the opera- 
tions I have considered. It seems unlikely that one is possible that preserves 
regularity; such an operation would probably involve external-edge com- 
position like the walk operations or multiplication, so that it would not be 
commutative. 

What does this mean for the physical model ? It means either super- 
position must be assumed for the tetrad, with all its properties, or I must 
look at a higher level for a superposition operation. The former is an un- 
acceptable alternative from the point of view of making a coherent physical 
model; if I start at the bottom putting things in by hand, the resulting 
structure will be pretty meaningless. Then I must look at a higher level. 

What does this mean for the physical model ? It means that some of the 
quantum properties are not as basic as I thought. The duality between discrete 
and continuous is probably fundamental. But superposition and amplitude 
are not. The uncertainty principle probably is not, although indeterminacy 
certainly is, in the sense that what cannot be measured is indeterminate. Then 
quantum mechanics as we know it will be derived from the fundamental 
indeterminacy and our habits of measurement. 

7. RESULTS 

As far as superposition is concerned, the result is an imperative to look 
for a higher-level operation. 

Two physically interesting operations have been defined. The walk 
operation is one in a family of operations of the same type. All such opera- 
tions tend to yield much bigger diagrams than the two diagrams the operation 
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was performed on. How much bigger depends on the number of  walks in the 
original diagrams. In Section 3 the number of possible walks is found. 

The other operation is multiplication. The main result of  the paper is 
the theorem about multiplication: it only iterates in one dimension. This 
result will probably be central to the definition of objects and time. 
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